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ABSTRACT

(Constitutive Modeling for Isotropic Materials)

This report documents the first year's progress on a NASA-Lewis contract
with the General Electric Company. The purpose of this contract (NAS3-23927)
js to develop and evaluate unified constitutive equations for application to
hot path components of aircraft gas turbine engines such as high pressure
turbine blades and vanes. To accomplish this goal, uniaxial, notched, and
multiaxial specimens made of conventionally cast Rene' 80 are being tested under
conditions which simulate engine operating conditions. In order to reduce the raw
data, automated data reduction techniques are being developed which produce
computer files which contain the information required in the analysis of proposed
constitutive theories. As described in the report, analytical methods are being
developed for determining the parameters in these nonlinear unified theories by
using these reduced data files. In another activity, a dedicated finite element
computer code is being developed for using unified theories in structural
analyses of hot section components. This code has been extensively verified for
one such theory by successfully predicting the strain histories measured experi-
mentally at the notch root of complex specimens of complex laboratory specimens.
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1.0 INTRODUCTION

The inelastic finite element analytic model that is chosen for a
particular type of numerical analysis of material behavior represents a
compromise between (1) the requirements of physical verisimilitude, (2)
mathematical accuracy and stability, and (3) computational convenience and
economy. In the past, the mathematical and computational problems have been
so dominant that most analysts have been content to adopt simple uncoupled
material models. Plasticity has been represented by an engineering stress-
strain curve, monotonic or cyclic, and creep by a relatively uncomplicated
power law equation.

It is well known that the simplest uncoupled material models ignored many
of the more complex, well documented kinds of high temperature material
behavior: 1inelastic recovery, cyclic creep, strain rate effects, and
thermomechanical (simultaneous ‘temperature and load variation) effects on
material response. Recent work has evolved constitutive theories that contain
representations for various combinations of these effects. Frequently these
models do not separate the analytical treatment of time-dependent and
time—-independent inelastic strains as do more classic models; these methods
are generally referred to as unified theories. It is the purpose of this
NASA-sponsored program to thoroughly evaluate such methods for application to
typical isotropic cast nickel base superalloys used for air-cooled turbine
blades and vanes.

This objective is being accomplished through a two year combined
analytical and experimental program. During this nine-task program, a
nonlinear finite element program will be developed using the selected
constitutive theory. The model will be evaluated against a series of uniaxial
smooth specimen experiments selected both to determine material comnstants and.
for verification purposes. Additional experimental work on more complicated
specimen geometries will be used to further evaluate the constitutive model
and to develop efficient numerical algorithms for the nonlinear finite element
code. These additional experiments will evaluate multiaxial states of stress;
also, a notch specimen geometry will be subjected to a variety of loading
conditions. The finite element computer program will be further demonstrated .
by modeling an actual hot path component such as a turbine blade or vame. At
the end of the effort, the final computer program will be delivered to NASA.

This report summarizes the work performed during the first year of the
contract.



2,0 INITIAL MODEL EVALUATION

The purpose of the initial model evaluation was to select two theories to
be incorporated into a finite element computer program. The work described in
this section was Task A of the contract.

A comprehensive literature survey of proposed constitutive theories was
conducted by General Electric in order to identify the two most promising
theories for use in subsequent tasks. Theories by the following authors were
chosen for closer review: '

Bodner et al. (Reference 1)
Chaboche (Reference 2)

Haisler et al. (Reference 3)

Hart (Reference 4)

Krempl (Reference 5)

Krieg, Swearengen, and Rohde (Reference 6)
Laflen and Stouffer (Reference 7)
Lee and Zaverl (Reference 8)
Miller (Reference 9)

10. Pian (Reference 10)

11. Robinson (Reference 11)

12, Valanis (Reference 12)

13. Walker (Reference 13)
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To evaluate these theories, criteria were developed to measure various
requirements. for constitutive theories. These criteria considered material
behavior phenomena, experimental requirements, and the numerical aspects of
each theory. Fourteen criteria were developed:

Cyclic hardening and softening
Kinematic hardening

Strain—rate effects

Creep—plasticity interaction
Nonisothermal cycling

Anelastic effects

Thermal recovery

Generalization to multiaxial stress states
Extension to anisotroplic materials
Ease of computer implementation

. Computer storage requirements

Economy of integration

Ease of determining material constants
14, Cost of determining material constants

I
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Prior to conducting a detailed review, a number of theories were ]
eliminated for various reasons. The theories of Haisler et al. and Pian were

an



too classical for the purposes of the current study. In a similar vein, it
was required that a theory not make use of a yield function; this eliminated
the theories of Chaboche, and Lee and Zaverl. The method devised by Laflen
and Stouffer was not considered since it had not been developed for cyclic
loading conditions, a mandatory consideration for hot-section components.
Similarly, the theory of Krempl was not evaluated in detail since it had not
been totally developed for cyclic conditions at the time of the review. The
theory of Valanis was eliminated bacause it has not yet been developed to
consider different time-dependent flow effects in a unified fashion. Finally,
the theory developed by Hart was eliminated because it called for specialized
test data from a load relaxation experiment. .

The five remaining theories were those of Bodner et al.; Krieg,
Swearengen, and Rohde; Miller; Robinson; and Walker. Each was evaluated in
detail against the fourteen criteria listed above. For each criterion, a
theory could receive up to a maximum numerical score of three. At the end of
this review all five theories were close in total score. Since the numerical
rating system 1s somewhat subjective, all five theoriés were further evaluated
through numerical comparison to determine if there were any distinguishing
features which would aid in selecting the final two theories. A detailed
description of the five unified theories is given in Appendix A.

Each of these five theories was programmed as a subroutine in a program
that performed a simple numerical integration of three basic equations: the
flow rule and the evolution equations for the state variables. All the
theories selected for detailed evaluation except that of Bodner use two types
of state variables — the back stress ! and the drag stress Z, The subroutine
developed from each theory performs simple numerical integration of the
following equations:

ey = £ loggs 2y, 2, 7] (0
Qij =g [0 ij, Qij’ Z’ T] (2)
Z=h [oij’ Qij’ Z, T) 3)

where éIi is the inelastic strain rate tensor, oyj 1s the stress

tensor, and T is the temperature. In all the theories considered, the drag
stress Z 1s a scalar. The theory of Bodner does not involve the back stress
24 5. The computer programs were written for three—dimensional model
evaluations. Although some of these theories are not available in
nonisothermal form, the basic evaluation described here were performed under
isothermal conditions.

All of these theories involve a number of material parameters. At the
time of evaluations, these parameters were not available for René& 80, the base
- material for this project; therefore, for the purpose of evaluation of the
theories, constants availlable for different materials and temperature in
published literature were used.



Constitutive Temperature,

Theory Material °F Reference
Miller Hastelloy X 1200 9
Walker Hastelloy X 1200 13
Krieg, Swearengen, Aluminum 110 6
and Rohde

Bodner René 95 1200 23
Robinson 2,25 Cr-1 Mo 1000 _ 11

Using the computer program, the above theories have been evaluated in
terms of their ability to model several basic aspects of material behavior.
These include:

. Strain rate sensitivity
Creep

Stress relaxation

History dependence

Cyclic hardening/softening
. Anelasticity

O‘U‘b?)NF—'

Each of these considerations is discussed below.

2,1 STRAIN RATE SENSITIVITY

A basic feature of any unified comstitutive theory is its sensitivity to
strain rate. This can easily be verified using a simple monotonic loading; at
different strain rates all the theories examined displayed this sensitivity.
Some examples are shown 1n Figures 1-4. Although all these theories displayed
the appropriate strain rate sensitivity, their state variables showed
different characteristics. In the Bodner, Robinson, and Walker models, they
saturated to the same limits at high strain rates, whereas in the Miller and
Krieg et al. models, the limits of the state variables were rate dependent.
The models of Bodner and Miller seem to have distinect point which depends on
strain rate, where the stress—strain behavior changes from linear to
nonlinear. However, none of these unified theories involves any specific
yield criteria.

2.2 CREEP

Another fundamental ability required of any model is to predict the
constant stress creep behavior of materials., This was verified for the models
by loading uniaxially under constant strain rate and then holding at constant
stress. All the models showed primary and secondary creep regimes. The
nmodels of Krieg et al. and Bodner are shown as examples in Figures 5 and 6.
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Figure 7 shows the interesting results of an exercise using the Robinson
model, It is well known that the steady state creep rate depends on the
stress and temperature. Under isothermal conditions, many materials display a
certain delay in the creep response when the stress is lowered during
secondary creep. The ability of the unified theories to model such behavior
was checked by exercising the Robinson model. Figure 7 shows four different
creep cases superimposed for comparison. In Figure 7a, after steady state
creep is reached, the stress is suddenly lowered. Figure 7b shows the creep
response. It 1s seen that the creep resumes at a lower rate, after a brief
delay. Figure 7c shows the response of the state variable (back stress in
this case). It is seen to be gradually saturating to a lower limit. It was
not conclusively determined if the creep response shown in Figure 7b is due to
the inequalities in the Robinson model or is an inherent part of the uynified
theories. Reference 15 discusses the Robinson Model for high-temperature

creep—-plasticity.

2.3 STRESS RELAXATION

During strain hold tests, materials show stress relaxation, This feature
has been verified for the theories. Figures 8 and 9 show the stress
relaxation responses predicted by the models of Walker and Miller,
respectively. These show a large amount of relaxatiom in a very short time
(about 15 ksi in less than 30 seconds). This seems to be true of all the
theories and materials examined. No stress relaxation data for the materials
modeled were available for verificatrion.

2.4 HISTORY DEPENDENCE

. Any rate~dependent unified constitutive theory should be able to model
the dependence of material behavior on prior deformation history. This
ability in the various theories considered here was verified by exercising the
- computer model using "ramped” cyclic. The strain amplitude is increased
gradually to finally involve inelastic strains in the reverse directionm.
These, together with the cyclic hysteresis loops and the response of the back
stress state variable, are shown in Figures 10 through 12 for the Walker model
and Figures 13 through 15 for the Robinson model. Note from Figure 11 and
Figure 14 that these models exhibit ratcheting behavior, as is typical of real
materials undergoing inelastic deformation. It is observed that the effect of
initial deformation is wiped out when large inelastic strains are involved.
Figures 12 and 15 show the behavior of a state variable, back stress. During
this type of loading the back stress tends to saturate for large inmelastic
strains. The back stress remains constant during the beginning of loading or
unloading when the inelastic strain rate is very small. (The sharp corners
during loading and unloading phases of Figure 15 appear to be due to the basic
form of the Robinson model, which involves inequalities.)
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2.5 CYCLIC HARDENING AND SOFTENING

Modeling of the cyclic hardening and softening is very important for
predicting the 1life of high temperature alloys. All the models were exercised
using completely reversed cycles. It was found that all the models predicted
cyclic hardening and that almost all of the hardening occurred during the
first cycle. Figure 16 showed the hysteresis loops obtained using the Krieg
et al. model at two different strain ranges. Figure 17 shows hysteresis loops
for several cycles using the Robinson model. Note that the stress-strain
response stabilized after the first cycle. Figure 20 shows a case where
stress was relaxed at the peak tensile strain of the cycle. Note the
significant amount of relaxation that occurred in the first 60 seconds.

Figure 19 shows the same cycling, but with the relaxation occurring at the
minimum strain (compressive) of the cycle. Figure 18 shows the same case
without any strain hold in the cycle. An examination of the above three cases
shows that at the end of the cycle, the stress—-strain point at the end of the
cycle is the same in each case. This indicates a negligible history effect
for this material and this model when large strain ranges are involved.

It has been seen that all the models discussed predicted cyclic hardening
for the materials examined. Several materials, such as René€ 80 and Inconel
718, are known to cyclically soften. In order to ensure that the unified
theories are indeed able to predict cyclic softening, the Walker model was
exercised with arbitrary modifications of some appropriate material
parameters. The material parameters Ky and N7 in the Walker model control
the evolution of the drag stress. These were arbitrarily given values of
-40,000 and 100 respectively, and it was seen that this lowered the drag
stress enough to produce cyclic softening. Figure 21 shows the hysteresis
loops with cyclic softening. It 1is possible that the drag stress may control
cyclic softening in all the models.,

" 2.6 ANELASTIC (RECOVERY) EFFECTS

Since all the unified constitutive theories feature time dependence, it
1s useful ro examine whether significant anelastic effects can be predicted.
A simple way to check this is to load the model into the inelastic regime and
unload and hold at the strain corresponding to near zero load. The stress
response will then give an indication of anelastic effects. This was done for
all the models, and none exhibited any significant anelastic recovery.
Figure 22 shows the stress—strain response and the stress—time response using
the Krieg model. Note that the stress remains at zero during strain hold
after unloading.

2.7 THEORY SELECTIONS

During the course of the detailed evaluations, several generic features
of the models became more evident, such as the roles played by the back stress
and drag stress. The numerical difficulties involved in using these theories
in practical problems also became more apparent. For example, in the theory

15
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of Miller (which uses three sinh functions) the numerical difficulties are
particularly severe. The inequalities involved in Robinson's model are a
potential source of problems, as mentioned previously. The Bodner model has
the advantage of simplicity without involving several different material
parameters. This model was, therefore, selected for further use in the
program. The second choice was what is referred to as a generic drag stress/
back stress model. The general formulations of the other four models will be
used but the selection of the specific functional forms for the flow rule and
the evolutionary equations will be deferred. The final selection of the
specific mathematical formulations will be made through detailed evaluations
of the baseline René 80 data. Thus, the second selected model was a hybrid
that includes preferred elements of the other four models. '
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3.0 MATERIAL SELECTION, EXPERIMENTAL PLAN, AND SPECIMEN DESIGN

This section of this report describes the experimental plan for Tasks B,
C, E, and F, 1In this investigation, conventionally cast Rene 80 was chosen as
the base material because of its frequent use in aircraft engine blade appli-
cations, and because its thin wall properties have been extensively evaluated
(References 16 and 17). The thin wall properties are important because the thin
sections of turbine blades experience the largest temperature/stress gradients,
Reference 18, and because some elevated temperature properties are diminished
with reduced wall size (References 16 and 17). For these two reasons, ‘and since
the information from this contract is to be used to predict the stress
distribution in blades, all the Rene 80 test specimens were designed with a
nominal wall thickness of 0.03 inch. The test specimens were cast as solid
bars and machined to final dimensions. This was done so that the measured
material properties would not include the effects of surface or microstructural
heterogeneities associated with cast-to-size specimens.,

3.1 MATERIAL PROCESSING

The René 80 material used in this program was 3.5-inch-diameter remelt
stock cast by Howmet Turbine Components Corporation, Alloy Division. The
certified composition of this material is compared to the alloy composition
gpecification in Table I. All analyses meet this composition specification.

The remelt stock was cast into cylinders by the Metals Division of TRW,
Inc. Two sizes of cylinders were cast. The smaller ones were approximately
0.5 inch in diameter by 4 inches long and were used for tensile, creep,
cyclic, and notched axisymmetric testing. The larger specimen blanks were
approximately 1.125 inches in diameter by 6 inches long and were used for
tension-torsion and benchmark testing., All the specimen blanks were investment
cast in Mg0, Care was taken so that both sizes of castings would have
similar grain size,

Twenty-four small specimens were cast at one time, The individual blanks
were cast in a vertical position, in two concentric rings, with each ring
containing twelve specimens, A total of three heats was cast to obtain 56
specimen blanks procurred for this program. TRW personnel noted that the
specimens from the outer ring may have a slightly finer grain size than those
from the inner ring. A specimen distribution plan was developed so that
specimens for tensile, creep, smooth cyclic, and notched cyclic properties
were evenly distributed among the three heats and ring (outer versus inner)
positions.

The large specimen blanks (1.125-inch diameter by 6-inch long) were also
investment cast in vertical position. Each heat contained six blanks in a
single ring. A total of seven heats was cast to get the 24 required
specimens. A specimen distribution plan was developed so that the axial-
torsion and benchmark specimens would be evenly distributed among the six
heats. :
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Table I. Composition of René 80.

Element Specification Certified Analysis
c 0.15-0.14 0.17
Mn 0.10 Max. 0.01
Si 0.10 Max. 0.02
S 0.0075 Max. 0.002
P 0.015 Max. 0.009
Cr 13.70-14.30 14,06
T 4,80-5.0 ' 4,87
B 0.01-0.12 0.015
Al 2,8-3.2 3.05
w 3.70-4,30 4,00
Mg 3,70-4.30 4,06
WMo 7.70 Min. 8.06
Co 9.00~-10.00 9.55
Zr 0.02-0.10 0.03
Fe 0.03 Max. 0.07
Cb 0.10 Max. 0.01
Ta 0.10 Max. 0.02
v 0.10 Max. 0.01
Cu 0.10 Max. 0.01
Hf 0.10 Max. 0.01
Mg 0.10 Max. 0.0032

Ni Balance Balance



Each specimen blank successfully passed an x-ray inspection at the
casting vendor.

The specimen blanks were then heat treated at Gemeral Electric. The
standard Rene 80 heat treatment, comprising four steps, was followed:

1. 2200° F/2 hrs; cool to 2000° F within 10 min; cool to room
temperature.

2. 2000° F/4 hrs; cool to 1200° F within 6 min; cool to room temperature,

3. 1925° F/8 hrs; cool to 1200° F within 30 min; cool to room
temperature.

4, 15509 F/16 hrs; cool to room temperature.

3.2 TEST SPECIMERS

There are three basic types of tests used in this investigation -
uniaxial (Task C), multiaxial (Task E), and benchmark verification (Task F).
Figure 23 shows. the uniaxial tubular thin wall specimen which was used for all
uniaxial experiments. Figure 24 shows the tubular, thin wall notched specimen
used in the multiaxial evaluations. The notch, shown in Figure 24, was
designed based on elastic finite element analysis and has a ratio of 0.35
between the maximum and minimum principal stresses. This is believed to be
adequate for the evaluation of the constitutive relationships developed in
this program. The notch geometry was also designed to facilitate use of the
interferometric strain gage (ISG, References 19 through 21) during the test.
Figure 25 shows a drawing of the hollow axial-torsion specimen used in the
multiaxial evaluations. This specimen has a larger gage length and inside
diameter than the specimen shown in Figure 23 in order to give more accurate
test data in the axial-torsion tests. Figure 26 shows the geometry of the
benchmark specimen. This is identical to the specimen analyzed and verified
by Domas, et al. (Reference 21) except that the specimen thickness was reduced
to 0.030 inch, consistent with the other specimens used in this program.

3.3 UNIAXIAL TEST MATRIX (TASK C)

During this task, tensile/stress relaxation, creep, and cyclic tests were
conducted. Table II shows the test matrix of the tensile tests., Tests were o
performed at a strain rate of 0.02 min~-1l (baseline) at temperatures from
537° to 980° C (1000° to 1800° F) in 1119 C (200° F increments.)

At both 1000° and 1800° F the tensile properties were evaluated at strain a
rates an order of magnitude higher and lower than the baseline strain rate.

These temperatures were selected to determine the influence of temperature on

strain rate sensitivities. The tension tests were performed using closed loop

testing equipment to assure proper strain rate control. Most of these tests

were terminated after a strain of 0.015. (It was planned to stop the
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straining of several of the early tests at 0.03; however, the specimens failed
at lesser strains. For that reason, the termination strain was reduced to
0.015.) After this strain level was reached, the strain was maintained for
the tests with baseline, higher, and lower strain rates at 1800° F for
approximately 24 hours.

Table III shows the test matrix for the ten monotonic creep tests. These
tests were terminated after a nonelastic strain of 0,01 or a time less than
1,500 hours. These tests were done using closed-loop testing equipment to
maintain good specimen alignment.

The matrix for the first uniaxial cyclic tests consists of 30 tests. The
intent of the first 20 tests was to furnish input for the constitutive model;
the other 10 tests (not yet completed) will be used to verify the predictions
of the selected constitutive models. It is anticipated that the last 10 tests
will include additional monotonic and isothermal cycling along with thermal
mechanical fatigue tests.

All cyclic specimens were tested in strain control in closed loop testing
machines at a constant value of A (alternating strain/mean strain). These
tests were performed using the constant strain amplitude block sequence
technique with €., (for As = 1 and As = ®) or ﬁﬁdnl (for AE = -1)
values of 0,0015, 0.0030, and 0,.0045, "Each testing block contained about 20
cycles. The € or le .| was increased for each of the first three
blocks; then the sequence of strain ranges was modified to look for transient
behavior occurring with sudden increasing and decreasing strain ranges. The
test temperatures were 14000, 16009, .and 1800° F to cover the range of
temperatures where strain rate of sensitivity is more severe. The strain rates
(¢ ) were selected to cover the range anticipated during airfoil mission
cycles.

In Table IV, the uniaxial cyclic test matrix is divided into three
sections: continuously cycled with ¢ = 0.2/min, continuously cycled with
¢ = 0.002/min, and hold-time tests at ¢ = 0.2/min. An A. ratio of =
(totally reversed strain cycling) was used as the baseline for the
continuously-cycled tests and all hold-time tests. This A_. was used for
both strain rates at all three temperatures. .

The other six contimuously cycled tests were conducted with A of either
+1 or -1. At 1600° and 1800° F, tests with A_ = -1 were performed; the
1400° F tests included both A, =+1 and -1. The rationale for this selection
is based on the predictions of McKnight, et al. (Reference 18) of strain levels
in advanced airfoils. At lower temperatures the mean strains are positive,
while at higher temperatures the mean strains are negative. The influence of
strain rate was evaluated at 1600° and 1800° F, where higher strain rate
sensitivity was observed.
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Table II. Tensile Specimen Test Matrix.

Test

Temperature Strain Rate, min~1

°FE O 0.002 0.02 9.2
1000 (537) T T + SR T + SR,
1200 (650) T + SR
1400 (760) T + SR
1600 (870) T + SR
1800 (980) T + SR T + ST T + SR

T Indicates a constant strain rate tension test terminated at a strain of 0,03,

SR is a stress relaxation test to be performed at a constant strain 0,03,

Table ITII. Creep Specimen Test Matrix.

Test - Initial

Temperature, Applied Stress Levels,
Q_ELSR_EL ksi

1400 (760) ~80.3, 92.0, 99.3

1600 (870) = 45.3, 60.0,. 71.5

1800 (980) | 16.0, 31.5, 43.5
2000 (1093) 16.6
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The eight hold-time tests shown in Table IV were strain controlled tests
with a strain rate of 0.2 min~l and fully reversed cycling (A€ = »), Hold
times of 12 and 120 seconds were used. Because of the mission cycle consider-
ations mentioned above, the 14000 F tests were done with hold times at both
minimum and maximum strain, and the 1800° F tests received a hold at
compressive strains. The 16000 F tests were done with hold times at maximum

strains.

The data reduction methods and the results of these tests are presented
in Section 4.0 of this report.

3.4 MULTIAXITAL TEST MATRIX (TASK E)

This experimental portion of this program used both notched axisymmetric
(Figure 24) and axial-torsion specimens (Figure 25). The intent of these
tests is to experimentally verify the predictions of the selected comstitutive
models. The notched axisymmetric tests will be performed at Michigan State
University using the ISG technique (References 19-21) and the tension-torsion
tests will be conducted at General Electric's Turbine Technology Laboratory.
(It has beea experimentally verified that the ISG technique will work at
1600° F if the specimen has a vapor-deposited gold-palladium coating. This
prevents extensive oxidation from obliterating the microhardness
indentations.) The notched axisymmetric test matrix is shown in Table V. The
first and second tests are a tension/stress relaxation and a creep test.

These will be identical to those performed in Task C except that these will be
notched specimens.

The cyclic tests on notched axisymmetric specimens listed in Table V will
be performed in remote strain control under totally reversed (A, = )
conditions. The remote strain limits will be those which result in maximum
longitudinal strain levels on the notch root of 0.0015, 0.0030, and 0,.0045
under monotonic loading. The four cyclic tests will be performed at two
strain rates under continuously cycled conditions, and with 120-second holds
at maximum and minimum strains,

Table VI 1lists the test matrix for the evaluation using axial torsion
specimens (Figure 25). They will be tested at 1600° F and 1800° F under
combined axlal and torsional strain control. Several tests will receive no
axial strain with the remainder being in-phase or out-of-phase cycling.
In-phase cycling has proportional axial-torsional straining while out—of-phase
cycling has non-proportional loading. At each temperature, two torsional
tests, four continuously cycled tests, and one hold time test will be
performed. One of these continuously cycled tests has a shift in axial strain.
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Table IV. Uniaxial Cyclic Specimen Test Matrix,
a) Continuously Cycled
(¢
Temperature, F
1400 1600 1800
A€ AE A€
[o2] [+ ] . [
€ = 0.2/min +1 -1 -1
-1
€ = 0.002/min © o ©
b) Hold Time: A_ = «, &= 0.2/min
Temperature, © F
1400 1600 1800
Hold Times 12 Sec Max 12 Sec Max 12 Sec Min
12 Sec Min 120 Sec Max 120 Sec Min
120 Sec Max
120 Sec Min
|
|
Table V. Axisymmetric Notched Specimen Test Matrix.
(1600° F)
Tensile min‘l; Stress Relaxation After

= 0.03

Fatigue (e, Snpax = 0.0015, 0.0030, 0.0045, Remote Strain Control)

Strain Rate &

min~1
0.02
0.002
0.002
0.02
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Test Description

Continuously Cycled
Continuously Cycled
Continuously Cycled
Minimum Strain 120 Sec. Hold



Table VI. Test Matrix for Axial-Torsion Tests.

Temperature Test £ In- or
(1) Type (1/min.) Aexy Out-of-Phase Cominent
0.02
Torsion 0.002
1600° F 0.02 o In
Axial- 0. 002. © In
Torsion 0.02 ® In 120 sec hold at
0.002 © Out Emax
0.002 © Qut €xx shift =
0.0015
Torsion {0°02
0.002
1800° F 0.02 © In
0.002 © In
0.02 © In 120 sec. hold at
0.002 ® Out at epjn
0.002 © Out exx shift =
=0.0015
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An axial-torsion extensometer has been designed for use in these
experiments., A new design was needed because most available axial-torsion
extensometers were too heavy for these thin-walled specimens. This design,
shown in Figure 27, consists of two annular rings contacting the specimen with
spring loaded, pointed quartz rods. From one of these rings an arm extends
parallel to the axis of the specimen; this arm acts as a target for the
separate axial and torsion displacent measurements. These measurements will
be made using high temperature capacitive displacement gages.

Adjustment Capacitance
Bolt Probe for

Axial Measure

Spring

Quaréz Rod

-
/‘

Clamp Probe
Section

Figure 27. Axial-Torsion Extensometer

All test specimens for the multiaxial evaluation have been machined but
testing has not yet begun.

3.5 BENCHMARK NOTCH VERIFICATION EXPERIMENTS (TASK F)

_The benchmark test specimens (Figure 26) must be tested in load control
with positive loads. (Compressive loads would buckle these 0.03-inch-thick
specimens.) An elastic-plastic finite element analysis was made to determine
if reversed plasticity could be obtained at the notch root under positive load
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cycling. The analysis was performed using CYANIDE, a code developed by
General Electric for rapid, inexpensive finite element analysis. A two-
dimensional finite element grid that consists of comstant-strain triangular
elements (Figure 28) was used. Four load cases were analyzed wherein the
remote boundary was loaded with a uniform stress. The cyclic stress strain
curve used in this analysis was reported by McKnight et al. (Reference 9).
Only four load cases were needed to determine if reversed plasticity occurred
at the notch root. In subsequent analyses more load cases will be used. An
elastic analysis matched the K, value for this specimen reported by Domas et
al. (Reference 21).

Figure 29 shows the stress—total strain results at the notch root and at
the edge of the mesh where loads are applied. The longitudinal stresses and
strains are reported where the longitudinal direction is parallel to the
loading axis. As one would expect, the stresses in the notch root are much
larger than those calculated at the remote location., Upon unloading the
specimen to zero load, the stresses at the notch root are compressive. The
data shown in this figure are connected by straight lines, so it is difficult
to determine if .reversed plasticity occurred. Figure 30 shows the
longitudinal stress plotted against longitudinal plastic strain. For that
case, unloading showed no change in the remote plastic strain, but at the
notch root, the plastic strain diminished by approximately 0.0009 upon
unloading. This demonstrates that this specimen can be tested using positive
load cycling to obtain reversed notch root plasticity. This reversal is great
enough for accurate experimental measurement and control.

All the benchmark specimens have been machined but testing has not
started. ]
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Figure 28.

Finite Element Mesh of the Benchmark Notch Specimen
Using Quarter Symmetry.
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4.0 UNIAXTAL EXPERIMENTS

All of the tensile, creep, and the first 20 cyclic tests have been
completed. The tensile and creep test data were recorded autographically on
X~Y recorders and strip charts. These data were digitized for data analysis.

The cyclic data were obtained with an automated test control and data
acquisition system manufactured by Engineering Technical Services of Champaign,
Il1linois. The load and extensometer outputs were determined with a resolution
of 5mV, where the full scale signal was 10V. For a typical test in this
program, the resolutions for stress and strain were 1.4 MPa and 0.00002,
respectively.

The cyclic tests were conducted in blocks of constant alternating strain
range ( ( €pax ~ emin)/Z). Table VII lists the sequence of the cycling
blocks for these tests. This sequence was designed to determine the influence
of strain cycling history on the constitutive response, During Blocks 1
through 7, the alternating strain range of 0.15, 0.3, and 0.45% was studied
along with every possible transition between. The purpose of Block 8 was to
determine the material response when the drag and back stress terms in the
constitutive relationships are ideally fully saturated.

Table VII. Sequence of Alternating Strain Range
in Cyciic Tests.

Test Block Alternating Strain Range

1 0.0015.
2 0.0030
3 0. 0045
4 0.0030
S5 0.0015
6 0.0045
7 0. 0015
8 0.0100

The data acquisition system recorded approximately 200 data points per
hysteresis loop. Data were determined for the first three cycles at the
beginning of each strain range block. After that, the loop data were acquired
every other cycle. This approach caused two minor difficulties: at rapid
strain rates, there was a small period of time between the first three cycles
of each block where the strain rate was zero., This period, on the order of
milliseconds, was the time needed to transfer the data from a buffer to
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storage. A look at the load-displacement plots showed that this had
negligible influence on the hysteresis loops. The second difficulty was that
the data obtained from every other cycle did not start precisely at the
beginning of a cycle (strain = 0 for A = «), This was resolved in the
analysis software. Both these problems were considered minor and of
negligible consequence to this investigation.

4.1 DATA ANALYSIS

The purpose of the data analysis was to reduce the experimental data to
basic properties (g, €, £g ) as well as the first temporal derivative
properties(&, é, and ¢ E). Software was constructed to do this automatically.
The data reduction has three basic phases - calculation of stress and total
strain from load, displacement, and specimen geometries; determination of
elastic modulus and calculation of EI and calculation of the derivative
properties. E

All stresses and strains in this report are engineering (and not true)
stresses and strains. The error associated with this restriction is less than
127 and makes the results consistent with finite element calculatioms.

Figure 31 shows the data from the first cycle of a 980° C (1800° F)
cyclic test on a hollow axisymmetric specimen of René 80. This cycle had an
alternating strain range of 0,15Z and a strain rate of 0.02/min (0.0033/sec).
These data have the appearance of a well-behaved hysteresis loop. Young's
modulus was calculated by performing a linear regression between stress and
strain, Software was developed to use the data between zero and some specified
stress on the loading portion of a cycle. Visual examination of the hysteresis
loop suggested that the proportional limit was approximately 20 ksi. An
elastic modulus was calculated in this fashion and used to calculate inelastic
strains., With this modulus, negative inelastic strains were frequently noted
at strains between O and 20 ksi during the initial loading, suggesting tht
yielding had already occurred at 20 ksi. As a result, modulus calculations
were performed as a function of limiting maximum stress. Figure 32 shows the
resulting modulus lines for limiting stresses of 69, 103.5, and 138 mPa (10,
15, and 20 ksi). As the limiting stress is lowered, the modulus is increased.
For a limiting stress of 69 mPa (10 ksi), there was little systematic trend of
negative inelastic strains.

The question remains as to whether the modulus calculated with a limiting
stress of 69 mPa is the actual modulus, especially at load reversals. TFigure
33 shows the elastic modulus lines (based on a limiting stress of 69 mPa) for
three cases ~ initial loading, load reversal at maximum strain, and load
reversal at minimum strain. For all three cases, this appears to be a
representative modulus line. On this basis, the limiting stress was chosen to
be half of the estimated proportional 1limit. This modulus value was used for

calculating ¢~ for the entire test.
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An averaging procedure was developed to calculate the first derivatives of
o,e, and el with respect to time. Figure 34 presents the same data previously
seen in Figure 31 except that the data are connected point—-to-point by a
straight line rather than shown as individual data points. The jagged
appearance of the line in Figure 34 is largely a result of the 5 mV resolution
in the data acquisition system. This jagged appearance requires that the
derivative properties be determined using a smoothing technique.

The approach taken in this program was to fit the data with a seven point
sliding polynomial, This technique performs a least square regression analysis
through the first seven data points., Then the first datum is dropped, the
eighth datum is added, and a new polynomial regression is performed. This
procedure is repeated until the last seven data points are analyzed. The
polynomial used in this investigation was

y =a,+tajt+ajp t2 + ajg 3 (4)
where I
y = 0’ €, OI‘ €

and t = time
The derivative of y with respect to time is

y = aj + 2ap t + 3a3 t?2 . (3

The values of the coefficients a,, aj, aj, and a3y were determined by

least square regression analysis to Equation 4, and the derivative property was
calculated using Equation 5 at the fourth point of the seven used in the
polynomial regression. With this approach, the value of y can be determined
for each point except the first or last three data points.

Figures 35 (a) and (b) show the variation of stress and strain
respectively, with time for the fatigue cycle shown in Figure 31. The
stress—-strain response during this cycle is rather well behaved and shows no
abrupt transients.

These data were analyzed with both a second order (a3 = 0) and third
order polynomial. Figure 36 (a) and (b) show the values of ¢ and ¢ as a
function of time, calculated using both a second-order and third-order
polynomial regression analysis. The values of ¢ and ¢ for third-order
polynomial regressions (x-symbols) show much higher scatter than those for the
second-order polynomial regression (triangles). The most disturbing
observation is seen In Figure 36, where a negative value of ¢ was determined
during the loading portion of the curve. A look at the stress—time data shown
in Figure 35a strongly suggests that this is physically unreasonable. On this
basis, the values of o, €, and ¢l were determined using a second-order,
seven point sliding polynomial. This restriction permits the value of y to
pass through a maximum or minimum, but prohibits the existence of an inflection
point (¥ = O at a specific value of y) in a y versus time plot. Based on the
rather uniform variation of constitutive response in Ren& 80, this seems to be
a reasonable restriction for this program.
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4,2 EXPERIMENTAL DATA

Only the 1800° F tensile, creep, and A, = », continuously cycled
Ren& 80 tests have been analyzed at this time. The results of the tensile and
creep tests will be discussed in detail in this section to show that the data
analysis method properly analyzes the data. The results of all three types of
tests will be used in subsequent sections of this report to develop the
constitutive model.

Figure 37 shows the stress—strain data at 980° C (1800° F) from
Ren& 80 tensile tests at four different strain rates. As expected, the strain
rate did not alter the elastic response but significantly affected the
stresses during plastic straining. Figure 38 shows the stress as a function
of inelastic strain. A two-orders—of-magnitude increase in strain rate
increases stress by approximately 50%. A few negative values of el are
shown in Figure 38. These are primarily a result of the errors associated
with 5mV resolution of stress and strain. The collapse of the elastic portion
of the stress-inelastic strain‘-curve supports the accuracy of the data
analysis procedures. Figure 39 shows the inelastic strain rates plotted as a
function of total strain for the 980° C (1800° F) tensile tests. For
plots such as these, the nominally elastic portion of the data has been
deleted. The straight lines in this figure are constructed at the applied
total strain rates. This figure shows that after approximately 1% strain,
el rapidly approaches the total strain rate e. These data show no
difficulty with the second order, seven point sliding polynomial technique.

Figure 40 shows the results of three 980° C, constant load (or
engineering stress) creep tests. Figure 40 shows the total strain as a
function of the logarithm of time. The behavior that occurs at approximately
10 seconds 1s the transition from elastic loading to a constant stress
condition. Figure 41 shows the variation of inelastic strain rate éI,
with total strain for the two higher stress tests. These results showed that
both of these tests pass through a minimum creep rate. ’

The remainder of the tests will be analyzed in the near future.
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5.0 UNIAXIAL EVALUATION OF CONSTITUTIVE MODELS

The comprehensive uniaxial test programs described in the previous
sections provide a sound basis for evaluating the two selected unified
constitutive models. Once the appropriate material parameters in the models
are known for René 80 (base material) analytical predictions can be compared
with the experimental results to evaluate the strain rate sensitivity, creep,
stress relaxation, history dependence, cyclic softening, and anelasticity
capabilities of the two models. The computer programs mentioned in Section

2.0 can be used for this purpose.

However, it has been widely recognized that one of the major sources of
difficulty in the use of unified constitutive theories is the determination of
the material parameters. No general procedures for determining these parameters
are currently available; and therefore, considerable effort has been made in the
present contract to develop such a method.

The approach adopted is to develop a computer program which directly uses the
various test results as input and generates the various material parameters as
output. The program is kept as flexible as possible so that different functional
forms can be used. This approach also assures consistency in the treatment of
the various test data. However, it should also be noted that, while conceptually
simple, such an approach can be very challenging because of the nonlinear
equations involved. Such a computer program has been developed for a generic
back stress/drag stress model.

The generic back stress/drag stress model is described by the following set
of equations for the uniaxial case:

N .
I o (o= n) sgn (o - Q) (6)
Z
M I
z'f‘llel'gzle Z-Ry (8)
where
éI = Tnelastic Strain Rate

Q = Back Stress
Z = Drag Stress

R; and Ry are static thermal recovery functions,
f1 and g; are the hardening functions, and
f9 and g7 are the dynamic recovery functiomns.

Equations 6, 7, and 8 are a set of coupled nonlinear differential equations.
The specific forms for the various hardening and recovery functions are
significantly different for the various models that have been published. The
approach taken in this project is to choose those forms that appear most
appropriate for the behavior of René 80. To determine the various materfal
parameters involved, an iterative approach is used. Some starting assumptions
are made, which are later relaxed. Specifically, it is assumed that (1) the
saturation values for the back stress and drag stress at the end
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of the monotonic tests are independent of the strain rate, (2) the drag stress is
a monotonically decreasing function, and (3) during steady state creep, the state
variables are constant. Thelr successive nonlinear optimizations are performed
in Equations (6), (7), and (8) based on the experimentally measured quantities,

Figure 42 shows a flow chart of the evaluation process for the back stress/
drag stress model. As described in Section 4.0, the various test data are first
reduced such that stress ( ¢ ), strain ( € ), time (t), inelastic strain ( EI ),
stress rate ( 5 ), strain rate ( ¢ ), and inelastic strain rate ( éI ) are known
throughout the test. These results are stored in a computer file that forms the
input to the computer program to determine the material parameters,

In the following, the recovery function Ry is neglected in Equatioﬁ (8) to

yield a greatly simplified form for the drag stress equation:
I:
-Z,L |e”] (9)
z=2,+2,e 3

where z |EII is the accumulated inelastic strain, When the parameters
Z3, Z3, and Z3 are positive, the drag stress is a monotonically decreasing
function of the accumulated inelastic strain. Previous exercises, described in
Section 2,0, had shown that this form of the drag stress equation can model
cyclic softening behavior., Rene 80, the base material in this project,
cyclically softens at elevated temperatures,

A basic feature of both unified models selected here is that their flow
equation can be inverted easily. Thus, the back stress § 1s found during the
test using
g . N .1
Q=0 - z(leI |1/ Isgn (&) (10)

Here, Z can be taken as a constant (= 20), to start. From this, it is
possible to find 2 during the- test using an appropriate numerical

technique. After several trials, it was found that a seven—point sliding
technique using a Ramberg—-0Osgood relation worked satisfactorily for the back
stress rate. Based on this @ and Equation (7), a nonlinear optimization 1s
performed to determine the material parameters in f;, f; and Rj. This

is done such that f;, fj are found from high strain rate tests and Rj

from slow strain rate tests and creep tests,

The next step involves the determination of the drag stress equation
parameters. The equation for ( (7) is considered known. The back stress Q 1is
found by numerical integration:

t
Q 3[ Qdt (11)
The drag stress Z is found by inverting Equation 6:
Y
Z |X[L/N (12)

Nonlinear optimization is performed using Equations (9) and (12) to find 23,
Z9, and Z3. This completes the first iteration of the procedure.
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With 2y, Z3, and 23 known, the drag stress Z i1s known during a
test. Using this value, a new back stress is calculated from Equation (10)
and the whole process 1s repeated.

Ren& 80 test data at 980° C (1800° F) have been analyzed in detail
using a computer program incorporating the procedure described above. Some of
the notable results are discussed below.

1. fj = constant, fj = constant appears to work reasonably well for
this case.

2. An appropriate form for the static recovery term in Equation (7)
appears to be:

.I
R1 = f3 IQI exp (f4 |s ]4—f5 Q) -
where f3, f4, f5 are constants. The constants in Rj have

been found using slow strain rate monotonic and creep tests.
However, the overall contribution of the above term seems extremely
small, as compared to the hardening and dynamic recovery terms.

3. Figure 43(a) shows the results of the iteration procedure after five
iterations, using only the high ¢ monotonic test (0.2 in/in/min).
It appears that parameters determined using the computer program can
reproduce the stress strain behavior reasonably well. Figure 43(b)
shows the same result using only the lower strain rate monotonic
test (0.002 in/in/min). The constants for these two strain rates
are significantly different. The main deviation seems to arise from
the drag stress equation parameters. A similar conclusion, based on
cyclic tests, is drawn later.

The monotonic-based constants are not able to predict the cyclic
behavior. Figure 44 shows the cyclic loop predictions using monotonic-based
constants., The test data, Figure 44(a), indicate that the 96th cyclic loop is
stable, without any further softening. The model, however, predicts too much
softening after only 3 cycles. The model prediction for the slow strain rate
test (Figure 44b) shows stable behavior, but the inelastic strain range is
predicted poorly. The deficiencies in the cyclic softening prediction are
believed to arise from the drag stress equation. Past experience has shown
that the drag stress equation constants control cyclic softening.

Figure 45 shows the results using constants based on all monotonic tests.
Note that these parameters overpredict the high ¢é tests and underpredict the
low € tests., Therefore, although the model appears satisfactory for a
specific strain rate, it does not seem able to represent the entire
straln-rate spectrum used here (0.002 in/in/min to 0.2 in/in/min).

Figure 46(a) compares the test data and model prediction for a cyclic test
at 0.2 in/in/min. (The result shown is for the 96th cycle.) It is assumed
that the accumulated inelastic strain is large enough that the drag-stress has
saturated to a constant value. The material parameters used (based on this
particular test only) were obtained in 15 iterations. The initial hardening
shown in the plot is disregarded because the prediction was made for only 2
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cycles and not the entire 96 cycles. It is clear that this set of material
parameters in the model predicts the entire hysteresis loop very well. The
maximum and minimum values of stress and inelastic strain are predicted
accurately. Figure 46(b) shows similar results for the 0.002 in/in/min cyclic
test.

Figure 46 indicates that the test procedure works well for each strain
rate. However, the material parameters are significantly different for the
two cases, The difference iIs seen to be caused by the drag-stress equation
parameters, as in the monotonic case. This again points to the limitation of
the particular model in representing a wide range of strain rate behavior. It
appears to be good only for a limited range of strain rates.

Current work 1s extending the analysis to lower temperatures. René 80
test data indicate less strain rate sensitivity at lower temperatures. A
similar procedure is being developed for the Bodner model, which involves only

one evolution equation.
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6.0 FINITE ELEMENT CODE IMPLEMENTATION

In Task D of this program, a computer program will be developed for use with
unified theories. As part of this effort, alternate solution strategies will be
evaluated. In order to facilitate the evaluation of different solution methods
and to make the final computer program as optimized as possible, a new, dedicated
finite-element computer program is being developed.

The two—dimensional (2D) finite element code containing Bodmer's
constitutive model has been completed and tested. This code uses
two~dimensional constant strain triangles and an incremental initial strain
iteration technique. To facilitate the simulation of arbitrary load
histories, the load history is partitioned into pilecewlse linear segments with
steady state thermal conditions during each segment. In order to simplify
input, reduce convergence problems, and minimize cost, a dynamic time-stepping
procedure is incorporated. A 3D finite element code has also been developed.
The 3D code employs 20-noded isoparametric bricks and computes inelastic
strains at the order 2 Gauss points. Other features of the 3D code are
essentially the same as for the 2D code.

The incremental equilibrium equation for the initial strain method with
steady state thermal conditions is

[K] {AdT} = fAF}.+ {AFI} (13)

where [K] is the elastic stiffness matrix, {AdT} is the increment in the total
displacement vector, {AF}1is the increment in the applied force vector,

I.- .
and {AF'} 1s a pseudo force vector due to the_increment in a vector of the
inelastic strains components. The vector {AF }is calculated by

{aF"} 'z%,( T Iy a
= S [BI'[E] {ae v) (14)
v

where N is the number of elements. In Equation (14), [B] is the strain
displacement matrix and [E] is the elastic constitutive matrix.

At the beginning and end of a linear load case the elastic solutions are
obtained using ‘

{eE} o = 171 {F} o

and - (15)
"YE} ¢ - k171 E

The vectors dE 0. F are the initial and final elastic displacements due to
initial and final applied thermomechanical loads. The elastic displacements
at any time ty in the load case are given by
t.~t
{@7) = a7}y + T [{d7}p - {d7}] (16)

tr %
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The total displacement vector at time tj is written as

T, _ ,E I I
{d7}, = {d"}, + {d™}, | + {ad7} (17)

where the increment in the inelastic displacement vector is
I -1
faaty = k17! {arh) (18)

and the increment in the inelastic pseudo force vector is given by Equation (14).
Thus, it is necessary to integrate the constitutive model from time ti—l to

t{. Although any number of integration schemes could be used, a second order
Adams—-Moulton method was employed. Since the flow equation and the state
variable evolution equation are coupled, an iterative procedure is needed to
compute {s } and Z at the end of a time step. The Integration of the
constitutive equation is within the overall equilibrium iteration loop as shown
in Figure 47,

A significant improvement in the iteration scheme 'was achieved by making an
initial estimate of the incremental inelastic pseudo force vector {AFI} 1in the
first iteration of a new time step. If {aFI} 1s set equal to zero on the first
iteration of a new time step (as is usually done) the first estimate of the
solution may be very poor. An initial estimate of the 1inelastic_strain increment
for each element can be made using {pcl} = {éI } 1~1 At, where {é"};_; 1s the
inelastic strain rate at the beginning of the time increment. 1If this is then
used in Equation (14) to make first estimate of the incremental inelastic force
vector, the stability and rate of convergence of the method is improved. By
including this logic, the number of equilibrium iterations was reduced by about
60%.

In a finite element code that allows a linear variation of applied loads,
large excursions in stress and inelastic strain rate are to be expected. For
economy and east of use, dynamic time incrementing is a necessity. There are two
important considerations in developing such an algorithm: first, the stability
of the iteration scheme and second, the accuracy of the integration procedure.
The stability of the system of equations depends on the constitutive model,
geometry, loading history, and material parameters. An approximate, but simple
and effective approach is to base the time step on the maximum inelastic strain

increment to occur in all of the elements. In order not to overshoot the point
where inelastic strain rates become significant it is also necessary to limit the
maximum stress increment. A final consideration is control of the local
integration error when computing inelastic strain increments. For components in
which fatigue life is a major consideration, the accurate calculation of local
stresses and strains is crucial. 1In order to control the error, the time step
should be chosen such that the local integration error does not exceed some
allowable value.

In order to verify the 2D finite element code with Bodner's model, a number
of uniaxial test cases were run and compared with published results (References
22-24). A representative example of the results of these calculations is shown
in Figure 48, In addition, a large two—dimensional model (Figure 28) of the
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benchmark notch specimen (Reference 21) was constructed and run with three
different loading histories and compared with published experimental results. An
example of these comparisons can be seen in Figure 49. The overall performance
of the finite element code with Bodner's model was quite good. The cost of
running the code is comparable to one using a conventional uncoupled plasticity
and creep counstitutive model.

The second constitutive model will also be implemented in both the 2D and
3D codes.
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7.0 DISCUSSION

This report documented the work performed during the first year of Contract
NAS3-23927, Constitutive Modeling for Isotroplc Materials. As discussed in
Section 3.0, conventionally-cast René 80 was selected as the base material for
this study. Because of the thin walls of turbine blades and the large grain size
of cast materials, all specimens studied were designed to have a wall-thickness
of 0.76 mm (0.03 i{nches). Section 4.0 discussed the various data reduction
methods for analyzing stress—-strain data and the selection of the best method use
in this effort. This system used automated test control and data acquisition
equipment; this greatly reduced the work necessary to generate raw data from each
experiment,

The screening of available models, discussed in Section 2.0, led to the
selection of two: the Bodner model and a genmeric back stress/drag stress model.
Work on both of these models 1s proceeding. In Section 5.0, the generic model
was compared to a set of 980° C (1800° F) of René 80 data generated during
the course of this work. These comparisons showed that the monotonic data at
several strain rates could not be totally modeled using the generic theory.
Furthermore, the cyclic and monotonic data could not be consistently modeled
using this theory. In both cases, the constants for the theory were calculated
using a specialized nonlinear optimization computer program. Work with this
theory at other temperatures will be continued during the coming year.

Section 6,0 briefly discussed the development of a finite element computer
code for use with the selected unified theories. The numerical algorithms in the
code have been optimized to reduce the costs of structural analyses with unified
theories. The program was verified by using the code and the Bodner model to
analyze both simple, smooth-specimen and complex, benchmark-notch-specimen
behavior. Further work with the code will include developing a 3D version and
incorporating the generic unified model.

72



o
1.

o
2.

L J
3.

@
"L"..
o 5.
6.

@
7.
8.

®
s 9'.
o 10.

@

8.0 REFERENCES

Bodner, S. R. and Partom, Y., "Constitutive Equations for Elastic
Viscoplastic Strain-Hardening Materials," ASME Journal of Applied
Mechanics, ASME, June 1975.

Chaboche, J.L., "Thermodynamic and Phenomenonological Description of Cyclic
Viscoplasticity with Damage," Translation of Publication No. 1978-3 of the
Office National d'Etudes et de Researches Aerospatiales, France, by the
European Space Agency Technical Translation Service, Publication No.ESA-TT-
548, May 1979.

Haisler, W., "Application of an Uncoupled Elastic—-Plastic Creep Constitu-
tive Model to Metals at High Temperatures," Symposium on Nonlinear Consti
tutive Relations for High Temperature Applications, May 19-20, 1982, The
University of Akron, Akron, Ohio.

Hart. E.W., Li, C.J., Yamada, H. and Wire, G.L., "Phenomenonological

Theory: A Guide to Constitutive Relations and Fundamental Deformation
Properties,"” Constitutive Equations in Plasticity, the MIT Press, Cambridge,
Mass., London, A.S. Argon, Ed., 1975, pp.1l49-197.

Krem>1l, E., "On the Interaction of Rate and History Dependence in Struc-
tural Metals,”" Acta Mechanica, Vol. 22, pp.53-90, 1975.

Krieg, R. D., Swearengen, J. C., and Rohde, R. W., "A Physically-Based
Internal Variable Model for Rate Dependent Plasticity,” Proceedings of
ASME/CSME PVP Conference, 1978, '

Lzflen, J.H., " A Constitutive Theory for Metal Creep,” PhD Disseirtationm,
Jniversity of Cincinnati, 1976.

lee, D. and Zaverl, F., "A Description of History Dependent Plastic Flow
Behavior of Anisotropic Metals," ASME Journal of Engineering Materials
and Technology, ASME, Vol 101, January 1979.

Miller, A. "An Inelastic Constitutive Model for Monotonic, Cyclic and
Creep Deformation (Parts I and II),” Journal of Engineering Materials and

Technology, April 1976.

Pian, T.H.H., "Time-Independent Anisotropic Plastic Behavior by Mechanical
Subelement Models," Proceedings of NASA Symposium on Nonlinear
Constitutive Relations for High Temperature Applications, Akron, Ohio, May
1982.

73



REFERENCES (Continued)

11. Robinson, D.N. and Swindeman, R.W., "Unified Creep-Plasticity Constitu-

give Equations for 2 1/4 Cr-1 Mo Steel at Elevated Temperature," ORNL/TM-
444,

12, Valanis, K.C., "A Theory of Viscoplasticity Without a Yield Surface,"
Parts I and II, Archives of Mechanics, Archiwum, Mechaniki Stoswaﬁej,
24, 4, 1971.

13, Walker, K. P. "Research and Development Program for Nonlinear Structural
Modeling with Advanced Time-Temperature Dependent Constitutive
Relationships,”™ NASA CR-165533,

14, Stouffer, D. C., Papernik, L., and Bernstein, H. L., "Prediction of the
Mechanical Response of a High Temperature Superalloy Rene 95,"
ORNL/TM-8444,

15. Robinson, D. N. "A Unified Creep—Plasticity Model for Structural Metals at
High Temperature,” ORNL/TM-5969.

16. Kaufman, M. "Examination of the Influence of Coatings on Thin Superalloy
Sections,” NASA CR-12115, August 1972,

17. Kaufman, M. "Examination of the Influence of Coating on Thin Superalloy
Sections,” Volume 1 and 2, NASA CR-134791 and CR-134792, December 1974.

18. McKnight, R. L., Laflen, J. H., Halford, G. R., and Kaufman, A., "Turbine
Blade Nonlinear Structural and Life Analysis,” AIAA-82-1056, 1982,

19. Bofferding, C. H. III, "A Study of Cyclic Stress and Strain Concentration
Factors at Notch Roots Throughout Fatigue Life,” M.S. Thesis, Michigan
State University, 1980,

20. Guillot, M. "An Experimental Evaluation of Neuber's Cyclic Relation at
Room and Elevated Temperature,” Ph,D. Dissertation, Louisiana State
University, 1981.

21. Domas, P. A., Sharpe, W. N., and Yau, J., "Benckmark Notch Test for Life
Prediction,” NASA CR-165571, June 1982.

22. Stouffer, D. C., and Bodner, S. R., "A Relationship Between Theory and
Experiment for a State Variable Comstitutive Equation,”™ Mechanical Testing
for Deformation Model Development, ASTM STP 765, R. W. Rohde and J. C.
Swearengen, Eds., American Society for Testing and Materials, 1982, pp.
239-250,

74



23.

24,

REFERENCES (Concluded)

Bodner, S. R., "Representation of Time Dependent Mechanical Behavior of
Rene 95 By Constitutive Equations,” Air Force Materials Laboratory Report
AFML-TR-79-4116, August 1979,

Stouffer, D. C., "A Constitutive Representation for IN100," Air Force
Materials Laboratory Report AFWAL-TR-81-4039, January 1981.

75



APPENDIX

The subroutines used for the detailed evaluation of the various

constitutive models reported here have the general three-dimensional form of
models, as reported in the cited references., However, for the purpose of
evaluating the various material parameters of the models from test data, it is
useful to reduce the general equations to uniaxial, isothermal form.

the

uniaxial forms are listed in the following pages for the five theories

examined in Section 2.0.

The

*Dy = -40,000 and N7 = 100 were used for checking the cyclic softening

In these equations, the following notations are used (uniaxial):

¢l = Inelastic Strain Rate

G = Applied Stress

B = Back Stress

D = Drag Stress

R = s |elde
Walker Model (Reference 13) )
.1 (lo - BIY (o-B)
? =( >/ Th-Bl I -n.|R] | .1} m-1
B = (nl+n2)éI - (B-B,mnye) [(“3+ m, 5T e + g [B] ]
D= D1 - D2 e_.n7lRI

following constants were used for Hastelloy X at 12009 F (Reference 13):

D1 = 95631
D21 | = 0%

n = 0.079
m =1.16
n, =0

n, = 1.5E7
o, = 781
n, =

ng =

ne =0

o, = 0%

B0 = -2000

capability,

PRECEDING PAGE BLANX NOT FILMED
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2. Krieg, Swearengen, and Rohde Model (Reference 6)

I _ . lo - B[CZ‘\O - B

& 1( D Ao -ZBI

" I 2  C.B B

B = - _ B
C3 £ C[&B [e”5 I]IBI

. I N
D = C, le”| - ¢, (d-D)
The following constants were used for aluminum, 110° F (Reference 6):

13 1/sec

6.0 x 10

6.05

424 MPa
-15

7.8016 x 10 1° MPa

1.15875 x 10> MPa

= 0

-2
=2

N OO B s

ﬂOUOQOOCOO

0
=0
1.0

3. Miller Model (References 9 and 13)

et ;{eei Sinh [-I—"—I')—Bl]l.s}n -fkg)l—

g-B

. &I 1 }n B
B =H, -~ HB6 {Sinh (4, IB]) ||
D =H |é1|(c + |B| - A, 3y - ¢80l {sinh (A D3)} n
2 2 e 272 2
1
el = EQ/ kT for T > 0.6Tm

o - Q [1 + 1n(0.6Tm) ]
{ 0.6kTm T } for T < 0.6Tm

The following constants were used for Hastelloy X at 1200° F (Reference 13):

o
[ |

8000 psi

1.598

1.0293 El4 1/sec
1.0E7 psi

=< -~ B =]
n 1
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! A; = 9.305E-4 psi
® H, = 100
C2 = 50,000 psi
A, = 5.9425E-12 ps1'3
Q = 104600 Cal./Mole
L J T = 1588 K
k = 1.9859
4, Robinson Model (References 11 and 15)
® -
éI -4 FE—l DZ ¢g-B] F>0, oB>0 and ¢ (2 0-B)> O
2y 2 3 3
or
F>0 and oB< O
®
=0F<0
or F > 0, ¢B >0 and oC%o—a) <0
. n-8-1
® p- 2l - R(/_ﬂgl) B;|B|>B_
éIB ‘ 8 4 K
A.E oB>0
n-8-1
_ 2uH eI—R</—z3;|ﬁl)B ;|| <3,
@ - /3 |Boi® - K B<O
el 9B <
F = (%pz + %02 - oa) / Kz -1
o The following constants were used for 2 1/4 Cr-Mo Steel at 1000° F

(Reference 11):

u = 3.61x 107

n =4
=7.73
= 1,5
9.0 x 1072 ksi/h
1.37 x 104 ksi/h
0.14 ksi

0.82 ksi

w m W w8
] ]

~
L]
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Bodner Model (Reference 14)

2 lol o _gﬂ(z)?'“
Y3 o o exp 2n a

- _ P _ 7 AT
m(z -2) W AZ, (2-29)

2

Oe
[}

Ne
[

The ‘following constants were used for Rene 95 at 1200° F (Reference 14):

Do = 104 sec“1 A = 4 x 10-4 sec-l
n = 3,2 r =1.5

z, = 319 kst E = 2.57 x 10" ksi
Z = 232 ksi

o

22 = 319 ksi

m = 2.758 ksi~!



